1 Closed Kepler Orbits in Cartesian Coordinates

The general solution of the orbital path of the relative position of two particles in polar coordinates (r, θ) can be written as

$$
\begin{equation*}
\frac{\alpha}{r}=1+\epsilon \cos \theta \tag{1.1}
\end{equation*}
$$

where α and ϵ are constants that depend on initial conditions.
Show that equation 1.1 can be written in Cartesian coordinates, $x=r \cos \theta$ and $y=r \sin \theta$, as

$$
\begin{equation*}
\frac{(x+d)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1.2}
\end{equation*}
$$

So find a, b, and d, as a function of α and ϵ.

