1 Rocket Speed at Maximum Momentum

The rocket starts at rest with initial mass m_{0} in outer space (no gravity). The rocket propels its self by expelling mass at a constant rate of $-\dot{m}=\alpha$ and with a relative exhaust speed of u. What is the speed of the rocket when it has its maximum momentum, v^{\prime}, as a function of m_{0}, u, and α ?

Hint: You do not need to solve any differential equations. You can do this by manipulating the free space rocket equation $m \dot{v}=-u \dot{m}$.
$\sqrt{\sqrt{\mathrm{d}}(m v)=\dot{m} v+m \dot{v}=-\alpha v+m \dot{v}=-\alpha v+(-u \dot{m})=-\alpha v-u(-\alpha)=\alpha(u-v)}$
where we used $\dot{m}=-\alpha$, and the rocket equation $m \dot{v}=-u \dot{m}$. We wish to maximize $m v$ in time where m is the mass of the rocket, v is the speed of the rocket, and $v=v^{\prime}$ is the speed of the rocket that maximizes $m v$, so

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}(m v)\right|_{v=v^{\prime}}=0 \quad \Rightarrow \quad \alpha\left(u-v^{\prime}\right)=0 \quad \Rightarrow \quad v^{\prime}=u \tag{1.2}
\end{equation*}
$$

