1 Moment of Inertia of a Hollow Sphere

Find the moment of inertia of a uniform thin-walled hollow sphere of radius R and total mass M as it rotates about an axis through the center of the sphere. Getting started: The figure below uses the x-axis as the axis of rotation. $I=\int_{x=-R}^{R} y^{2} \mathrm{~d} m=\int_{x=-R}^{R} y^{2}(\sigma 2 \pi y \mathrm{~d} s)$ where σ is the mass per unit area for the sphere, and $\mathrm{d} s=\sqrt{\mathrm{d} x^{2}+\mathrm{d} y^{2}}$.

1.0 solution

We get the moment of inertia about the x-axis by adding the moment of inertia many rings with radius $y=\sqrt{R^{2}-x^{2}}$

$$
\begin{equation*}
I=\int_{x=R}^{-R} y^{2} \mathrm{~d} m=\int_{x=R}^{-R} y^{2}(\sigma 2 \pi y \mathrm{~d} s) \tag{1.1}
\end{equation*}
$$

where $\sigma=\frac{M}{4 \pi R^{2}}$ is the mass per unit area of the sphere and

$$
\begin{align*}
& \mathrm{d} s=\sqrt{\mathrm{d} x^{2}+\mathrm{d} y^{2}}=\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \tag{1.2}\\
& R^{2}=x^{2}+y^{2} \quad \Rightarrow \quad 0=2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad \Rightarrow \quad\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}=\frac{x^{2}}{y^{2}} \tag{1.3}
\end{align*}
$$

So

$$
\begin{equation*}
\mathrm{d} s=\sqrt{1+\frac{x^{2}}{y^{2}}} \mathrm{~d} x=\sqrt{\frac{y^{2}+x^{2}}{y^{2}}} \mathrm{~d} x=\frac{R}{y} \mathrm{~d} x \tag{1.4}
\end{equation*}
$$

So with this and equation 1.1

$$
\begin{align*}
& I=\int_{x=-R}^{R} y^{2}\left(\frac{M}{4 \pi R^{2}}\right) 2 \pi y \frac{R}{y} \mathrm{~d} x=\frac{1}{2} \frac{M}{R} \int_{x=-R}^{R} y^{2} \mathrm{~d} x=\frac{M}{R} \int_{x=0}^{R} y^{2} \mathrm{~d} x=\frac{M}{R} \int_{x=0}^{R}\left(R^{2}-x^{2}\right) \mathrm{d} x \\
& =\frac{M}{R}\left(R^{2} R-\frac{R^{3}}{3}\right) \Rightarrow I=\frac{2}{3} M R^{2} . \tag{1.5}
\end{align*}
$$

