

A simple plane pendulum consists of a mass m attached to a string of length l. The suspension point of the pendulum remains fixed, as the length, l, is shortened at a constant rate α , as shown above. The pendulum has a length l_0 at time t = 0. In this problem we'll find the equations of motion for the pendulum using the Lagrangian and the Hamiltonian method, and we'll look at the energy in the system.

1 Lagrangian

In terms of θ , $\dot{\theta}$, m, α , l_0 , and t, write an expression the Lagrangian for this system.

2 Lagrange's Equations of Motion

Using your Lagrangian, find Lagrange's equations of motion.

3 Canonical Conjugate Momentum

Find the canonical momentum that is conjugate (paired) to the generalize coordinate θ . That is find $p_{\theta} \equiv \frac{\partial L}{\partial \dot{\theta}}$, as a function of θ , $\dot{\theta}$, m, α , l_0 , and t.

4 Hamiltonian

In terms of θ , p_{θ} , m, α , l_0 , and t, write the Hamiltonian, $H(\theta, p_{\theta}, t)$, for this system. There should be no $\dot{\theta}$ in the Hamiltonian for this system. Your dynamical variables are now the canonical pair θ and p_{θ} .

5 Hamilton's Equations of Motion

Find the equations of motion for θ and p_{θ} and show that these equations of motion, for θ and p_{θ} , are equivalant to the equations of motion from section 2.

6 Energy vs Hamiltonian

In terms of m and α , find the difference between the total energy and the Hamiltonian.