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1 Particles on a Massless String

1.1 Finding the Normal Modes

The figure above shows three particles, of mass m
3

each, attached to a string that keeps a constant tension,
T , in it. The length of the whole string is L. The string does not move up and down at the two ends.
The tension remains constant even then the particles move a little. We will consider the particles to move a
small distance in the up and down (transverse) direction. Find the three normal modes and list them in the

order N = 1, 2, 3, where a coordinate position vector, −→q , is defined by −→q =





q1

q2

q3



. Write them in the form

−→
QN =





a1N

a2N

a3N



 cos(ωN t−δN ), where N = 1, 2, 3. Write the normal angular frequencies, ωN , N = 1, 2, 3 in terms

of T , m, and L. Normalizing the amplitudes of the modes is not required. You should use Fowles equations
11.5.14d to 11.5.20 (pages 502-503) to solve this problem. The pictures on page 503 (figure 11.5.2) goes a long
way in helping understand these modes.

1.2 Find a Particular Solution

The middle particle is pulled up (plucked) a distance of A and released, at time t = 0, as shown. When
the particle is released none of the particles are initially moving. Find an expression for the motion of the
three particles for all time, t, after they have been released. Write your solution as a linear combination of the

normal mode vectors,
−→
QN , where N = 1, 2, 3 which you found above, including the phase constants δN , where

N = 1, 2, 3. So your solution will be of the form

−→q = A1

−→
Q1+A2

−→
Q2+A3

−→
Q3 = A1





a11

a21

a31



 cos(ω1t−δ1)+A2





a12

a22

a32



 cos(ω2t−δ2)+A3





a13

a23

a33



 cos(ω3t−δ3) (1.1)

More specifically, find the values for the itegration constants A1, A2, A3, δ1, δ2, and δ3, and present them
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in the form of equation 1.1. Looking at the pictures on Fowles page 503 (figure 11.5.2) helps a lot here. You
can eliminate many unknowns from symmetry considerations.

2 Compare to a String

2.1 Speed of a Wave on the String

A string is stretched to a length L. It has a total mass of m. The tension in the string is kept constant with a
value of T . This is some what similar to the above three particle problem.

Find the speed of a wave on this string. Fowles equation 11.6.7b may be handy. Answer in terms of L, m,
and T .

2.2 Normal Angular Frequencies

Find the angular frequency of the first three lowest frequency modes. Give your answer in terms of m, L, and
T . Fowles equations 11.6.12 and 11.6.16 may be handy.

2.3 Compare with Three Particle Problem

For the first lowest three angular frequency modes, find the ratio of the three particle frequency to the spring
angular frequency. That’s something like

ω1particles

ω1string
,

ω2particles

ω2string
, and

ω3particles

ω3string
. The answer to this should be just

three constant numbers. Give the exact numbers and than three significant figures.

2.4 A Some What General Solution

The string is plucked at the center, at x = L
2
, and released from a rest position, as shown. Now we’ll find

an expression for the shape of the string as a function of time. From Fowles equation 11.6.14 the answer can
be put in the form

y (x, t) =

∞
∑

N=1

ANsin

(

2πx

λN

)

cos (ωN t) , (2.1)

where the sum is over all modes, and λN = 2L
N

and ωN are related by ωN

2π
= v

λN
, which is Fowles equation

11.6.12.
In this case the mode coefficients, AN , can be found from the initial conditions ẏ (x, 0) = 0 and
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y (x, 0) =

{

2A
L

x : 0 ≤ x ≤
L
2

2A −
2A
L

x : L
2
≤ x ≤ L

(2.2)

and from Fourier series

AM =
2

L

∫ L

x=0

y (x, 0) sin

(

2π

λM

x

)

dx (2.3)

where M is a particular integer in the sum in equation 2.1, and λM is the wave length of the M -th mode
(Fowles equation 11.6.16 with M → N).

Note: The initial condition ẏ (x, 0) = 0 is already satisfied, so we have not started with the most general
solution to the 1-D wave equation of this system.

Show that equation 2.3 is the expression for the mode (Fourier) coefficients for any y (x, 0) (not just y(x, 0)
in equation 2.2) given that the string starts at rest, and y (0, t) = 0 and y (L, t) = 0, by plugging y (x, 0), from
equation 2.1, with t = 0, into equation 2.3.

2.5 Find a Particular Solution

Plug equation 2.2 into equation 2.3 to find the mode (Fourier) coefficients, AN , for equation 2.1 to get the
shape of the string as a function of time. Put your answer in terms of the lowest angular frequency ω1 and L.

3 Why Don’t We Study Transverse Motions of Particles on a Line of

Springs?
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3.1 Spring Potential Energy

Above is shown a section of a linear array of masses (particles) and springs. Both springs shown above have
spring constants k. The masses have an equilibrium position with x positions at even l intervals and y i = 0 for
all masses. Assume that yn−1 � l, yn � l, and yn+1 � l. Calculate the potential energy in the two springs
and expand this expression to the lowest power in yn−1

l
, yn

l
, and yn+1

l
.

3.2 String Potential Energy

Calculate and expand potential energy again, but now replacing the springs with string that keeps a constant
force, F , for all values of string elongation. The potential energy change in the stretching string will be F times
the change in the length of the string. Expand the potential energy in the two strings to the lowest power in
yn−1

l
, yn

l
, and yn+1

l
.

3.3 Why?

Compare the forms of the spring potential energy and the string potential energy with the forms that we have
been studying, and answer the question: Why don’t we study transverse motions of particles on a line of
springs?


