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Abstract

We present DIVERSE, a highly modular collection of
complimentary software packages designed to facilitate the
creation of device independent virtual environments.
DIVERSE is free/open source software, containing both
end-user programs and C++ APIs (Application
Programming Interfaces).

DgiPf is the DIVERSE graphics interface to OpenGL
Performer™.  A program using DgiPf can run on
platforms ranging from fully immersive systems such as
CAVEs™ to generic desktop workstations without
modification.  

We will describe DgiPf’s design and present a specific
example of how it is being used to aid researchers.

1.  Introduction

We introduce DIVERSE (Device Independent Virtual
Environments– Reconfigurable, Scalable, Extensible), a
highly modular collection of complimentary software
packages, containing both end-user programs and C++
APIs (Application Programming Interfaces), designed to
integrate distributed simulations with heterogeneous virtual
environments (VEs) [1].

DgiPf (DIVERSE graphics interface to Performer) is a
module of DIVERSE that augments OpenGL Performer™
to facilitate the creation of device independent graphical
applications.

Figure 1 is an example of a complete DgiPf program
that loads a model file.  The user of this program can:
� run with one or more immersive, or non-immersive

graphical display systems, or desktop simulators of
immersive environments,

� select from navigation and other interaction
techniques,

� configure input devices, either real or virtual, local or
remote.

The code in Figure 1 is basically a Performer program.
All graphical configuration code typical to a Performer
application has been removed, and four lines of DgiPf
code, in bold, were added.  This program can run on a
CAVE™, RAVE™, ImmersaDesk™, head-tracked HMD
(head mounted display), desktop or laptop, using any
available navigation or interaction technique that the user
chooses [2].

Figure 1. A complete DgiPf program

1.1. Motivation

DIVERSE grew out of a need to provide a highly
reconfigurable device independent system to support the
display of data from asynchronous distributed simulations.

#include <dgiPf.h>

int main(void) {

pfInit();

dgiPf app;

pfConfig();

app.display()->world()->

addChild(pfdLoadFile(“model.pfb”));

while(app.state & DGIPF_ISRUNNING)

     pfFrame();

pfExit();

return 0;

}



We are fortunate to have access to a wide range of
immersive and non-immersive systems.  We desired a
software solution that would allow a user to run an
application, unmodified, on all of these systems.

We also desired a free and open source system that could
be readily shared; a system that would encourage the
growth of a mutually supportive user community that
leaves no one out due to financial restraints

It was also recognized that high-end systems such as the
CAVE are not cost-effective debugging and development
platforms.  In addition, for reasons of both efficiency and
convenience, users seem to prefer to spend most of their
time in their offices and labs.  Only when they perceive a
benefit from running their software in an immersive
system will they do so.  Furthermore, many members of
our VR community are not programmers; they develop
content using their tools of choice and hope to use
immersive systems to visualize this content.  Therefore the
software we develop should:
� allow an application to be run, unmodified, on all

supported platforms,
� support application-independent interfaces optimized

for each platform,  (For example, a desktop interface
can be used on a desktop system, and an immersive
interface can be used in an immersive system, without
needing to modify the underlying application.)

� provide emulators of immersive systems to support
development and debugging of immersive systems on
non-immersive systems, and,

� include tools that allow non-programmers to display
and interact with their data.

These goals imply that our software should
automatically handle all of the details of graphics display
and device access.  The goals also imply that our software
should have the ability to support the separate development
of applications and user interfaces.  From these goals came
our list of design criteria.
1.  Works by default

Any good software package needs reasonable default
behaviors.  We try to make the default behavior be the
case that is most used or the least damaging, if the
most used case can cause harm.  This also implies that
the software should be robust and work at all times.

2.  Stay out of the user’s way!
This criteria also means to stay out of the

application programmer’s way.  We have noticed that
some software packages make assumptions that
prevent you from doing what you want to do.  They
are designed to be the central part of your system.  We
say that they follow the “center of the universe” design
paradigm.  

We assume that programmers know best how to
design and structure what they are doing.  DIVERSE

is designed to augment, without imposing a particular
structure.  This facilitates freedom in design.  

3.  Easy to use
Like the first directive this one may seem obvious,

but it can also conflict with the second design
directive.  But, since the second directive fosters
innovation and flexibility we tend to favor it over ease
of use.

These criteria lead to specific design features:
1.  Highly Modular design

A module is a standardized, interchangeable
component.  By using a highly modular design we are
able to achieve:
� Selectivity– The programmer only needs to use

the parts of DIVERSE that are relevant to the
application.  The end-user only needs to use the
parts of DIVERSE that are relevant to the
application’s specific execution environment or
desired modes of behavior.

� Interchangeability– Modules interact with other
modules via standard interfaces.  This feature
allows the abstraction of such things as hardware
devices and navigation techniques.  

For example: a head tracker is not tied to a
particular hardware device, or even any hardware
device, as it can be emulated via software.  The
application is unaware of the tracker data source,
and this data source can be switched between the
various hardware and software trackers, real or
simulated, without the application having to be
restarted, or it even being aware of the source
being changed.

Another example: a navigation module allows
locomotion through the virtual world.
Encapsulated navigation modules allow them to
be developed and used independently of the
application program.  This also allows on-the-fly
switching between navigation techniques.

� Flexibility– Modules make DIVERSE easy to
extend and reconfigure; this also applies to
applications that use DIVERSE.

New modules can be built on top of existing
modules to add functionality, and new instances of
existing modules can be written to support new
implementations.  Applications can use the new
module types and instances without requiring
program modification.

2.  Augment, don’t replace
DIVERSE augments and uses existing software

libraries instead of creating new non-standard
implementations.  This allows us to take advantage of
the quality software efforts of others and focus on our
specific goals.  It also often makes it easier to port



existing applications into DIVERSE, as they don’t
have to be completely rewritten.  For example, as
shown in Figure 1, DgiPf augments Performer.

3.  The same program works everywhere
A DIVERSE program should be able to run on any

supported hardware configuration without
modification.  On the same machine platform, it
should be able to do so without needing to be
recompiled, but will require different system-specific
configurations to be loaded at run-time.

1.2. Availability

DIVERSE is available for download from the
DIVERSE home page: http://www.diverse.vt.edu/.

Included with the distribution are utility and application
programs, as well as dozens of example programs.  DgiPf
currently runs on all platforms supported by Performer:
SGI IRIX™ and GNU/Linux systems [3][4].  Multiple
IRIX binary types are supported– o32, n32 and 64.

DIVERSE is free/open-source software.  Its libraries are
licensed under the LGPL (GNU Lesser General Public
License), and its programs are licensed under the GPL
(GNU General Public License) [5].

1.3. Other related VR systems

Before deciding to embark on the expense and toil of
creating our own system we surveyed the available VR
systems to see if one would fit our needs.  Many products,
such as the CAVElib™[6], dVise™[7],
WorldToolKit™[8], Vega™[9] and MR Toolkit[10] were
rejected because they were not free, both in the sense of
cost and of redistribution.  Although VR Juggler[11]
currently meets this criteria, at the time of our survey in
July 1999, it had not yet been released open source.  When
VR Juggler was OpenSourced in January 2000, we decided
to continue DIVERSE development because VR Juggler,
with its callback architecture, takes the “main()” loop
away from the user, which we felt was not adequately
“staying out of the user’s way”.

1.4. DIVERSE Modules

DIVERSE currently consists of two modules; DgiPf
is a module that implements graphic display output and
user interactions in VEs. DTK, the DIVERSE ToolKit,
implements non-graphical tasks such as peripheral
hardware services and networking.  The segregation of
DIVERSE into graphical and non-graphical modules
allows new graphical modules to be incorporated into
DIVERSE as needed, and simulations that require no

graphical output do not need to link to any particular
graphics packages.

DgiPf adds immersive and non-immersive graphics to
simulations by augmenting OpenGL Performer™, a high-
level scenegraph-based graphics API built using OpenGL
[12][13].  DgiPf uses DTK for utility functions, non-
graphical hardware access and I/O facilities.

Figure 2. Library dependencies

Figure 2 illustrates how DgiPf interfaces with DTK,
the application, and other software libraries.  Notice that
the application can directly call DgiPf, DTK, Performer
and the system libraries.

2.  DgiPf Design

DgiPf, being a C++ API, is built using classes
containing methods and data.  There are four classes that
will be used in most DgiPf applications, as described
below.

2.1. The Display Class

The Display class is used to configure and query the
characteristics of the graphical displays. By querying the
methods of the Display class, applications will be created
that are device independent.

One or more graphical displays can be specified, and
each one can have an arbitrary size, position and
orientation with respect to the virtual world.  Each display
presents a single mono image, or a stereo pair with
parallax offset.  Each graphical display contains one or
more mapped areas, or viewports.  Each viewport contains
either a symmetric or asymmetric viewing frustum.

Application

DTK

dgiPf
and

DSOs
Performer

System libraries, including OpenGL and X windows

Hardware interfaces



Figure 3. The DgiPf coordinate cube

Symmetric frusta, typically used in non-immersive
configurations such as desktops, have a fixed shape, and a
base that moves to accommodate changes in the viewing
position and orientation.  Asymmetric frusta, typically
used in immersive configurations, have a base at a fixed
position, and a shape that changes with the viewing
position, but not the viewing orientation.

Display configuration is specified in a normalized right-
handed coordinate system whose origin is at the center of
the virtual world.  As with Performer, the +X axis is to the
right, the +Y axis is straight ahead, and the +Z axis goes
up.  A coordinate cube two units on a side encompasses
the VR system’s display area.  Figure 3 illustrates this
coordinate system.  The application can specify its own
world coordinate system using any arbitrary translation,
rotation and uniform scaling.

Figure 4. The DgiPf scenegraph

The Display class creates a small Performer scenegraph,
illustrated in figure 4, containing three nodes under which
the user can create geometry.  Each node corresponds to a
different type of coordinate system.  The root of the
scenegraph, called the scene node, is used for normalized
coordinates; objects placed under this node will be
displayed with the same size and orientation regardless of
the application’s world coordinate settings.  Under the
scene node is the ether node, used for objects that will be
displayed in world coordinates, but which will not be
subject to navigational offsets.  This node is useful for
unreachable objects such as a sky dome, or a cylinder
containing a texture map of a mountain ridge representing
a horizon.  Below the ether node is the world node.
Objects placed under this node are displayed in navigated
world coordinates; applications typically place most of
their geometry under this node.

Figure 5. Example Display class hierarchy

The Display object is the root of a tree-structured
hierarchy of DgiPf class objects.  Each object creates and
manages objects belonging to the class directly below it in
the tree.  The number and attributes of the objects in each
class determine the configuration of a system’s graphical
displays.  This tree structure minimizes errors that are
caused by misconfiguring Performer objects.  Figure 5
illustrates the configuration of these objects in Virginia
Tech’s CAVE.  The classes are arranged as follows:
� The Display object creates one or more Pipe objects,

each of which configures and controls a Performer
pfPipe object.  A pipe refers to a graphics pipeline;
there is one pipe for each graphics controller in use.



� A Pipe object creates one or more Window objects,
each of which creates and controls a Performer
pfPipeWindow object.  A window is mapped to a
rectangular portion of the display area managed by the
pipe.

� A Window object creates and controls one or more
Screen objects.  A screen is a rectangular portion of a
window.  In immersive systems a Screen usually
corresponds to a physical display surface, such as a
wall of a CAVE.  In non-immersive systems a Screen
is usually used as a viewport.

� A Screen object creates and controls Performer
pfChannel objects.  If the Window object that created
the Screen object is in mono, a single pfChannel is
created. If the Window is in stereo, two pfChannel
objects are created, one for each eye.

An application will typically only invoke Display class
methods; in this way it is independent of the graphic
display configuration.  An Augmentation object (see
section 2.3) that configures a set of graphical displays will
use the methods of the Display class and all of the classes
below it in the tree.  

2.2. The Input Class

The Input class is used to read data from an extensible
set of generic input devices; each device is implemented as
a class based on the Input class.  Additional device
types/classes can be created as desired, allowing virtually
any type of input device to be defined.  DgiPf currently
implements the following device types:
� A locator is a device providing 3-space positional

information, represented as a location and orientation,
typically provided by a tracker.

� A keyboard is a device returning an X-windows
KeyCode, representing a key on the keyboard.

� A button is a device returning an array of bits, each
having a value of one or zero.

� A valuator is a device returning an array of floating
point values.  A mouse is an example of this device;
its position is represented by two floating-point
values.

� A selector is a device returning an array of integer
values.

Any device can be either queued or polled, as specified
by the application.  A queued device, typically a button or
keyboard, queues each state change.  A polled device,
typically a locator or valuator, merely maintains a state
which can be read at any time.

Event records contain a snapshot of the data associated
with all loaded input devices, and are stored in a circular
queue.  Each change to the state of a queued input device

queues an event record.  In this way it is possible to get
the values of all devices at the time the event occurred.

The source of the input data is typically specified
externally to DgiPf using DTK.  Similar input devices, be
they actual or simulated, local or remote, can be
exchanged, restarted and reconfigured using DTK, without
the DgiPf application being aware of the modifications.

2.3. The Augment Class

The Augment class contains methods to augment DgiPf
functionality by means of pre-defined callbacks.  An
Augment object inherits four virtual methods, any or all of
which it may overwrite:  
� prePfConfig, which is called once, just before

Performer’s pfConfig function,
� postPfConfig, which is called once, just after

Performer’s pfConfig function,
� prePfApp, which is called every frame, just before

Performer’s pfApp function starts to traverse the
scenegraph, and

� postPfApp, which is called every frame, just after
Performer’s pfApp function returns from traversing the
scenegraph.

There are no limitations placed on what the code in an
Augment object does. The importance of the Augment
class cannot be overstated. Augment objects, and classes
derived from the Augment class, are used to:
� implement the Input class,
� configure the Display and Input classes, either directly

in the Augment object itself, or indirectly by having
the Augment object read interpreted configuration
files,

� implement navigation and interaction techniques,
� create desktop simulators of immersive systems, and,  
� implement new Performer node types, facilitating a

data-driven programming paradigm.  For example, an
object is automatically positioned in the virtual world
based on the output of a networked simulation
process.

2.4. The DgiPf Class

A DgiPf application creates a single instance of the
DgiPf class, which is the application’s entry-point into the
DgiPf API.  

The DgiPf object manages other C++ objects.  It loads
and unloads pre-compiled DSO (Dynamically Shared
Object) files containing objects based on the Augment
class, and invokes the four virtual methods of each loaded
Augment object at the appropriate times.  A returned status
value tells the DgiPf object what actions to take with
respect to the Augment object.



Since DSOs are loaded at run-time, and their behavior is
cumulative, the application itself can be reconfigured
without needing to be recompiled by loading different sets
of DSOs.  This facility allows the same application to run
in an immersive virtual environment, such as a CAVE
using stereo glasses and a head tracker, or on a desktop
using a monitor and mouse, and to be navigated and
controlled with different interaction techniques, without
modification.  

The DgiPf class also creates a single Display object,
optionally configured by the loaded Augment objects,
which generates graphical output by invoking Performer
methods.  In order to queue event data from input devices
the DgiPf class also creates a single event record object.
The DgiPf class unloads and deletes all objects that it
creates, when appropriate.

To keep program complexity to a minimum, some of
DgiPf’s methods are automatically invoked by some of its
other methods when required, but only when appropriate.
This minimizes the complexity of application programs as
well as minimizes errors due to Performer and DgiPf
methods not being invoked, or being invoked at the wrong
time.

3.  Writing a DgiPf Application

The first decision that should be made when designing a
DgiPf application is: “Where does the functionality go?”
By this we mean that the designer needs to determine what
pieces of the application can be written into Augment
DSOs, and what pieces need to be part of the application
itself.  We have determined over time that in general as
much code as possible should be written as DSOs.  The
pieces that should be written as DSOs are those that can be
reused; either by other applications, such as a navigation
technique, or as an interchangeable component of the
application.

DgiPf comes with dozens of example programs; each
one is designed to demonstrate a specific feature.  Source
code of examples, standalone programs and loadable DSOs
are included with the distribution.

3.1. Example: Diversifly

Diversifly is a small program that allows non-
programmers to load and navigate through model files and
apply global transformations and lighting effects; it is the
DIVERSE analogue of Performer’s perfly.  In form,
Diversifly is similar to the program in Figure 1; the main
difference is that Diversifly contains command-line
argument parsing and additional error checking. Diversifly
also invokes Display class methods to configure the world
coordinate system, and contains some Performer code to

place light nodes into the scenegraph.  Like any other
DIVERSE program, the display format, navigation and
interaction techniques are loaded as DSOs.  Diversifly has
become popular as an easy way to see how a model will
look in various display settings.  It has also proven useful
as a generic program which can be used to test new
interfaces that are encapsulated as DSOs.

3.2. A Concrete Example

The purpose of the Scientific Applications and
Visualization Group (SAVG) at the National Institute of
Standards and Technology (NIST) is to accelerate scientific
discovery through computation and visualization [14][15].
SAVG provides a framework of hardware, software and
complementary expertise that application scientists can
utilize to facilitate meaningful discoveries.

Figure 6. Visualization of flowing concrete

Immersive Virtual Reality (IVR) [16] is an emerging
technique with the potential to handle the growing amount
of data from large parallel computations or advanced data
acquisitions.  DIVERSE is among the IVR tools used by
SAVG to advance the scientific research of its
collaborators.  NIST (including SAVG) is physically
located across two campuses in Gaithersburg, MD and
Boulder, CO.  The device independence of DIVERSE
allows the same applications to be run on non-stereo and
stereo enabled workstations across both campuses, as well
as the RAVE located at Gaithersburg.  This ability to run
on a range of input and output devices is critical for SAVG



collaborators.  The two wall RAVE is configured as an
immersive corner with two 8' x 8' (2.44m x 2.44m)
screens flush to the floor oriented 90 degrees to form a
corner.  DIVERSE handles the details of stereoscopic
projection and the I/O for head and wand tracking.

Researchers in the Building and Fire Research
Laboratory (BFRL) at NIST are studying high performance
concrete [17].  BFRL is leading the Virtual Cement and
Concrete Laboratory (VCCTL) consortium consisting of
the major cement producers [18].  "Concrete is the most
widely used man-made product in the world, and is second
only to water as the world's most utilized substance [19]."
Any improvements in concrete such as cost, durability,
strength will have a significant impact on the economy.
SAVG is a member of the VCCTL consortium and
collaborates with the visualization and parallel computing
needs.

Figure 6 is a single image from a diversifly based
interactive visualization of flowing concrete. Ellipsoids
represent concrete particle motion.  Lines represent their
full path over the simulation time period. The numerical
algorithm [20] simulates the flow of ellipsoidal objects
(concrete particles) in suspension.  The visualization plays
an important role in the validation of the algorithms and
the correctness of complex systems like this flow of fluid
concrete.  A digital movie of this visualization is available
at: http://math.nist.gov/mcsd/savg/vis/concrete/ [21].

The virtual reality simulation of concrete flow was
implemented with DIVERSE.  More specifically, it was
implemented using diversifly, so no application specific
DIVERSE or Performer programming was required.  Two
general purpose and very simple ASCII file formats were
defined.  Performer file loaders were implemented as DSOs
to provide an interface between the numerical simulation
and the immersive environment.  The file formats are
suitable to a wide range of application areas.

The numerical simulation algorithm was implemented
to execute in parallel on both shared memory systems and
distributed memory clusters.  The output of the simulation
is the position, orientation and size of the particles for a
series of time steps.  Utilizing shell scripts and common
filters/tools, the simulation data is transformed into the
suitable formats to be loaded, viewed and navigated with
diversifly.

The success of this application has shown DIVERSE to
be a valuable tool in support of the SAVG collaborators.
With this infrastructure in place, SAVG has found a quick
and almost effortless (no application specific VR
programming) method for a wide range of scientists to get
numerical simulations or other research into the immersive
virtual reality environment.

4.  Future Directions

We are currently extending the DIVERSE project to
include new modules, extensions to existing modules, and
more interfaces to other existing packages.

A new DIVERSE module is being completed which
augments the OpenGL interface in the same manner that
DgiPf augments the Performer interface.  This new
module, named DGL, allows us to port DIVERSE to
platforms that are not supported by Performer.  DGL will
be scenegraph agnostic; scenegraph libraries that generate
OpenGL can be used with DGL to create VE content.

To better support the visualization of 3-D data sets we
are creating interfaces to other visualization packages.  We
plan to first write interfaces to VTK [22], and SGI’s
OpenGL Volumizer™ [23].

To support networked collaboration we are writing
tools to support the creation of collaborative VEs.  A
collaborative application will allow multiple users on
multiple systems to share data sets and interact with them
in the same virtual world.  A simple example of a
collaborative tool might be a new type of scenegraph node
that can be transparently shared amongst users.  Another
example could an “awareness tool,” such as a DSO that
displays status information about the shared virtual world
and its inhabitants.

We are also currently in the process of writing more
navigation and simulation techniques.  Navigation
techniques will include features such as collision detection
and dynamics.  Simulators will be more intuitive and
anthropomorphic.  All of these will be written as DSOs,
so they will be readily available to any application.

We are continually adding to the diversifly program.
We are creating a GUI (Graphical User Interface) front-end
written in FLTK [24], so it will be easier for users who
aren’t familiar with Unix to access immersive
environments.

We welcome suggestions and comments from users as
to how best improve DIVERSE.
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